Author : Hagen Kleinert,Verena Schulte-Frohlinde

Publisher : World Scientific

Release : 2001-07-30

ISBN : 9814490792

Language : En, Es, Fr & De

GET BOOK

**Book Description : **

This book explains in detail how to perform perturbation expansions in quantum field theory to high orders, and how to extract the critical properties of the theory from the resulting divergent power series. These properties are calculated for various second-order phase transitions of three-dimensional systems with high accuracy, in particular the critical exponents observable in experiments close to the phase transition. Beginning with an introduction to critical phenomena, this book develops the functional-integral description of quantum field theories, their perturbation expansions, and a method for finding recursively all Feynman diagrams to any order in the coupling strength. Algebraic computer programs are supplied on accompanying World Wide Web pages. The diagrams correspond to integrals in momentum space. They are evaluated in 4-ε dimensions, where they possess pole terms in 1/ε. The pole terms are collected into renormalization constants. The theory of the renormalization group is used to find the critical scaling laws. They contain critical exponents which are obtained from the renormalization constants in the form of power series. These are divergent, due to factorially growing expansion coefficients. The evaluation requires resummation procedures, which are performed in two ways: (1) using traditional methods based on Padé and Borel transformations, combined with analytic mappings; (2) using modern variational perturbation theory, where the results follow from a simple strong-coupling formula. As a crucial test of the accuracy of the methods, the critical exponent α governing the divergence of the specific heat of superfluid helium is shown to agree very well with the extremely precise experimental number found in the space shuttle orbiting the earth (whose data are displayed on the cover of the book). The phi4-theories investigated in this book contain any number N of fields in an O(N)-symmetric interaction, or in an interaction in which O(N)-symmetry is broken by a term of a cubic symmetry. The crossover behavior between the different symmetries is investigated. In addition, alternative ways of obtaining critical exponents of phi4-theories are sketched, such as variational perturbation expansions in three rather than 4-ε dimensions, and improved ratio tests in high-temperature expansions of lattice models. Contents:Definition of phi4-TheoryFeynman DiagramsDiagrams in Momentum SpaceStructural Properties of Perturbation TheoryDiagrams for Multicomponent FieldsScale Transformations of Fields and Correlation FunctionsRegularization of Feynman IntegralsRenormalizationRenormalization GroupRecursive Subtraction of UV-Divergences via R-OperationZero-Mass Approach to CountertermsCalculation of Momentum Space IntegralsGeneration of DiagramsResults of the Five-Loop CalculationBasic Resummation TheoryCritical Exponents of O(N)-Symmetric TheoryCubic AnisotropyVariational Perturbation TheoryCritical Exponents from Other ExpansionsNew Resummation AlgorithmConclusion:Diagrammatic R-Operation Up to Five LoopsContributions to Renormalization-Constants Readership: Graduate students, researchers and academics/lecturers in theoretical physics. Keywords:Reviews:“This book is overall a very good one on the RG as applied to critical phenomena. I believe that it will soon achieve the status of a standard reference book on this subject.”Journal of Statistical Physics